147. The Acid Dissociation Constant of the Protonated Form of Tri(hydroxymethyl)methylamine.

By S. P. DATTA, A. K. GRZYBOWSKI, and (in part) BARBARA A. WESTON.

Dissociations constants for this base at 0-60° have been measured. Discrepancies from published results are discussed.

TRI(HYDROXYMETHYL)METHYLAMINE ("tris") is widely used in biochemical research for the preparation of buffers because of its low toxicity and the useful range of pH's which can be covered. Therefore, it appeared desirable to make accurate measurements of the dissociation constant over a wide temperature range, and thus define more precisely the pH values of buffers prepared from it. It was also thought that a detailed study of the acid dissociation equilibria of this substance might throw light on the interaction of the hydroxyalkyl substituents with water. Since the completion of this work Bates and Hetzer ¹ have described the same equilibrium with substantially similar results.

Chloride-containing buffer solutions were used in cells without liquid junction of the type:

$$Pt, H_2(1 \text{ atm.}) | R \cdot NH_3^+, R \cdot NH_2, Cl^-| AgCl, Ag$$

The concentrations of the solutions were expressed on the molal scale. From the e.m.f.'s of these cells, values of pwH were derived:

$$pwH = F(E - E_0)/RT \ln 10 + \log m_{Cl^-} = -\log a_{H^+} \gamma_{Cl^-}.$$

The values of pK_a are related to pwH as follows:

$$pK_{a} = pwH + \log \left[\text{R} \cdot \text{NH}_{3}^{+} \right] / \left[\text{R} \cdot \text{NH}_{2} \right] + \log \gamma_{\text{R} \cdot \text{NH}_{3}}^{+} \gamma_{\text{Cl}}^{-} / \gamma_{\text{R} \cdot \text{NH}_{3}}, \tag{1}$$

where the activity coefficient term is represented ² by:

$$-\log \gamma_{\mathrm{R}\cdot\mathrm{NH}_{a}} + \gamma_{\mathrm{Cl}} - /\gamma_{\mathrm{R}\cdot\mathrm{NH}_{a}} = 2AI^{\frac{1}{2}} + BI + CI^{\frac{3}{2}}, \tag{2}$$

in which A is the Debye–Hückel constant and B and C are empirical parameters.

Corrections were applied for the hydrolysis of the basic species and for complex formation by the silver ion.² The hydroxide-ion concentration was calculated from:

$$m_{\rm OH^-} = {\rm antilog} ({\rm pwH} - {\rm p}K_{\rm w}),$$

where pK_w is the negative logarithm of the ionic product of water calculated from Robinson and Stokes's equation.³ The first and second stability constants for the trissilver complexes were determined by titration in cells with liquid junction from 0° to 60° at 10° intervals by the method described previously.⁴

The thermodynamic values of pK_a were found by extrapolating to zero ionic strengths the function:

$$y = pwH + \log [R \cdot NH_3^+] / [R \cdot NH_2] - 2AI^{\frac{1}{2}} = pK_a - BI - CI^{\frac{3}{2}},$$
(3)

which is obtained by combining equations 1 and 2. The extrapolation was carried out by fitting experimental values of y to the above equation by the method of least squares.

The values of the E_0 of the Ag,AgCl electrodes used were determined by measurements of the e.m.f. of cells of the type:

Pt,H₂ (1 atm.)|HCl|AgCl,Ag

¹ Bates and Hetzer, J. Phys. Chem., 1961, 65, 667.

 ² Datta and Grzybowski, Trans. Faraday Soc., 1958, 54, 1179.
³ Robinson and Stokes, "Electrolyte Solutions," Butterworths Scientific Publis., London, 1955, p. 496. ⁴ Datta and Grzybowski, J., 1959, 1091.

in some cases at 25° (Series 1) only, but in most cases at 5°, 25°, and 45° (Series 2). In the former instance the temperature coefficient given by Bates and Bower ⁵ was used but, in the latter, the E_0 's at the other temperature were interpolated by comparison with Bates and Bower's results.⁵ The concentrations of the hydrochloric acid solutions used were in the range 0.01—0.03m and their activity coefficients were calculated from the data of Bates and Bower ⁵ by a method described previously.²

The values of $(E - E_o)$, the molalities, ionic strengths, and extrapolation functions y from equation 3 are given in Table 1. The observed values of pK_a , its standard error, and the constants B and C of equation 3 are given in Table 2. When the values of pK_a were related to temperature by Harned and Robinson's ⁶ equation,

$$pK_a = A/T - D + CT, (4)$$

the fit was unsatisfactory, as is evident from the differences between the observed and the calculated values of pK_a shown in Table 2. It was found, however, that the experimental pK_a 's can be represented adequately by an equation of the form

$$pK_{a} = A/T - D + CT + ET^{2}.$$
 (5)

As can be seen from Table 2 the differences between the observed and the calculated values of pK_a are then much smaller and more random. $V(\log K)$ is 752×10^{-8} for equation 4 and 214×10^{-8} for equation 5, where $V(\log K)$ is the variance of the observed values of pK_a about the respective equations in temperature. $V(\log K) = \sum \Delta^2/(m-3)$ for equation 4, and $\sum \Delta^2/(m-4)$ for equation 5, where *m* is the number of temperatures at which observations were made.

With the type of experimental procedure used, $V(\log K)$ is usually smaller than $V(y_0)$, the variance of the intercept in the extrapolation curves against ionic strength, owing to correlation of errors. This is because, when measurements are made at different temperatures on the same solution, errors in the stoicheiometry and failure in the reproducibility of the electrodes are repeated at each temperature. When the extrapolation against ionic strength is linear, $V(y_0)$ is given ⁷ by:

$$V(y_{\rm o}) = \left\{\frac{1}{n} + \frac{\bar{I}^2}{\sum\limits_{1}^{n} (I - \bar{I})^2}\right\} \frac{1}{n - 2} \sum_{1}^{n} \Delta^2.$$
(6)

However, when a second arbitrary parameter, in $I^{3/2}$, is introduced, a more complex formula must be used:

$$V(y_{o}) = \left\{ \frac{1}{n} + \frac{\bar{I}^{2} \sum_{1}^{n} (I^{3/2} - \bar{I}^{3/2})^{2} + \bar{I}^{3/2} \sum_{1}^{n} (I - \bar{I})^{2} - 2\bar{I}^{5/2} \sum_{1}^{n} (I - \bar{I})(I^{3/2} - \bar{I}^{3/2})}{\sum_{1}^{n} (I - \bar{I})^{2} \sum_{1}^{n} (I^{3/2} - \bar{I}^{3/2})^{2} - \left[\sum_{1}^{n} (I - \bar{I})(I^{3/2} - \bar{I}^{3/2})\right]^{2}} \right\} \frac{1}{n - 3} \sum_{1}^{n} \Delta^{2}$$
(7)

When the full Debye-Hückel equation is used to represent the activity coefficient term in the extrapolation function, the adjustable ion-size parameter a^* is itself arbitrary. Hence, although a function linear in ionic strength is ultimately obtained by adjusting a^* , it is not permissible to use equation 6 for $V(y_0)$, since the variance in a^* is not then included. To test these relations, the full Debye-Hückel equation was applied to our results at 5° and 25°, a^* being found by minimising $\sum \Delta^2$ about the extrapolation lines. The intercepts, values of a^* , $V(y_0)$ from equation 6, and the values of $V(y_0)$ from equation 7 for the corresponding extrapolations based on equation 3 are in Table 3. It is clear that the values

- ⁶ Harned and Robinson, Trans. Faraday Soc., 1940, 36, 973.
- ⁷ Please, Biochem. J., 1954, 56, 196.

⁵ Bates and Bower, J. Res. Nat. Bur. Stand., 1954, 53, 283.

TABLE 1.

Molalities and ionic strengths of solutions, e.m.f.'s of cell (1) (abs. v), and extrapolation functions y [eqn. (3)].

At each temperature the first line represents $10^{5}(E - E_{0})$, and the second represents y.

Series 1.

 m_1 = molality of tri(hydroxymethyl) methylamine; m_2 = molality of HCl; m_3 = molality of KCl; y = pwH + log $[m_2/(m_1 - m_2)]; \ I = m_2 + m_3.$

${10^2 \ m_1 \over 10^2 \ m_2 \over m_1 \over 10^2 \ m_3}$	1·2163 0·9267 0·9183	$1.6369 \\ 1.2471 \\ 1.2358$	$1.9026 \\ 1.4496 \\ 1.4364$	$2{\cdot}5378 \\ 1{\cdot}9334_8 \\ 1{\cdot}9160$	$3.5568 \\ 2.7098 \\ 2.6853$	4·1044 3·1270 3·0987	$5.4334 \\ 4.1395 \\ 4.0806$	$6.1349_{5} \\ 4.6740 \\ 4.6317$	$6.4177 \\ 4.8894 \\ 4.8452$
25°	55,729 8·1919	55,057 8.2071	$54,725 \\ 8.2164$	$54,089 \\ 8.2339$	$53,352 \\ 8 \cdot 2561$	$53,036 \\ 8.2648$	$52,464_6 \\ 8.2889$	52,235 8·3040	52,100 8·3007
35°	55,958 7.9236	$55,286 \\ 7.9426$	54,934 ₉ 7·9506	$54,289 \\ 7.9700$	$53,520 \\ 7.9908_5$	53,202 ₅ 8·0011	$52,612 \\ 8.0541$	$52,374 \\ 8.0401$	52,237 8·0373
45°	56,201 7·6744 ₇	$55,537 \\ 7.6982$	$55,162 \\ 7.7042$	$54,503 \\7.7249$	$53,711 \\ 7.7459$	53,388 7·7569	$52,783 \\ 7 \cdot 7817_5$	52,539 7·7970	52,388 7·7927
55°	56,489 7∙4473 ₅	55,807 7·4716	55,407 $7\cdot4754$	$54,742 \\7{\cdot}4983$	53,916 7·5181	53,586 7·5297	$52,966 \\ 7.5550$	52,715 7·5704 ₆	$52,560 \\ 7.5662$

Series 2.

 $m_1 = \text{molality of tri(hydroxymethyl)methylamine hydrochloride;} m_2 = \text{molality of KOH;} y = \text{pwH} + \log [(m_1 - m_2 + m_{OH})/(m_2 - m_{OH} - \Delta_R)]$, where Δ_R is the decrease in the molality of the free base due to complex-formation with Ag⁺ ions; I_{av} (the average ionic strength) = $(m_1 + \Delta_{Cl})$, where Δ_{Cl} is the increase in the molality of Cl⁻ ions due to increased solubility of AgCl.

$10^2 m_1 \ 10^2 m_2 \ 10^2 I_{av}$	$1.6725 \\ 0.8536 \\ 1.6728$	$\begin{array}{c} 2 \cdot 4330 \\ 1 \cdot 2364_7 \\ 2 \cdot 4334 \end{array}$	3·1394 1·6040 3·1399	$3.1733 \\ 1.6182_{5} \\ 3.1738$	$\begin{array}{c} 4{\cdot}0022_5\\ 2{\cdot}0412\\ 4{\cdot}0029\end{array}$	${}^{4\cdot 0022_5}_{2\cdot 0412}_{4\cdot 0029}$	$4.5919 \\ 2.3291 \\ 4.5926$	5.1697 2.6216 5.1705	$\begin{array}{c} 6{\cdot}3676_{5}\\ 3{\cdot}2436\\ 6{\cdot}3687\end{array}$	$\begin{array}{c} 6{\cdot}6008\\ 3{\cdot}3614_{6}\\ 6{\cdot}6017\end{array}$	$7 \cdot 2743$ $3 \cdot 7019$ $7 \cdot 2755$	8.2762_{5} 4.1664 8.2776
0°	${\begin{array}{c} 58,302_{5}\\ 8\cdot 9636 \end{array}}$	$57,512 \\ 8.9842$		$56,992 \\ 9.0005_{5}$		$56,528 \\ 9.0155$	$56,231 \\ 9.0254$	55,979 9∙0305₅	55,590 9·0454	$55,514 \\ 9.0470_5$	$55,339 \\ 9.0576$	$55,057 \\ 9.0712$
5°	${ 58,421 \atop 8.7917_5 }$	57,615 8·8121		57,092 8·8297	$56,611 \\ 8.8431$	56,619 8∙8446	$56,321 \\ 8.8552$	$56,061 \\ 8.8598$	55,675 8·8764	${\begin{array}{*{20}c} 55,599_{5}\\ 8{\cdot}8784_{8}\end{array}}$	55,414 8·8877 ₅	55,118 8·8996
10°	$58,560 \\ 8.6296$	57,739 8·6499		57,208 8·6676	$56,723 \\ 8.6820$	56,727 8.6827	$56,424 \\ 8.6932$	$56,157 \\ 8.6975$	55,772 8·7155	55,694 8·7174	${}^{55,504_8}_{8\cdot7266}$	55,201 8·7380 ₅
15°	${ 58,710_5 \atop 8.4751 }$	${}^{57,875}_{8\cdot 4954_5}$	57, 3 57 8·5107	57, 334 8·5131	$56,843 \\ 8.5278$	$56,846 \\ 8.5284$	56,538 8∙5390	$56,268 \\ 8.5434_7$	${}^{55,877_{5}}_{8\cdot5617}$	$55,799 \\ 8.5638$	$55,606 \\ 8.5728$	$55,295 \\ 8.5841$
20°	$58,872 \\ 8.3278$	$58,023 \\ 8\cdot 3482$	57,496 8·3636	57,470 8·3654	56,973 8∙3807	56,975 8.3811	$56,661 \\ 8.3915$	56,389 8·3965	55,989 8·4143	$55,912 \\ 8.4168$	$55,714 \\ 8.4257$	55,399 8·4 3 70
25°	59,036 8·1858	58,177 8·2069	$57,638 \\ 8.2218$	$57,603 \\ 8.2222$	${ 57,108 \atop 8\cdot 2392_5 }$	57,105 8.2387	$56,791 \\ 8.2501$	$56,518 \\ 8.2556$	$56,107 \\ 8.2728$	$56,030 \\ 8.2755$	55,830 8·2846	55,509 8·2958
3 0°	59,208 8·0497	58, 3 40 8·0718	57,788 8·0860	${}^{57\cdot747}_{8\cdot0854_6}$	57,253 8·1041	$57,238 \\ 8.1016$	$\begin{array}{c} 45,924_8 \\ 8{\cdot}1140 \end{array}$	$56,652 \\ 8.1204$	$56,234 \\ 8 \cdot 1374$	56,154 8·1400	55,954 8·1494 ₉	$55,627 \\ 8.1607$
3 5°	59,379 7·9181	$58,502 \\ 7.9410$	57,934 7·9540	57,909 7·9563	57,402 7·9740		57,050 7·9810	56,787 7·9897	56,361 8·0064 ₆		56,080 8·0192	55,747₅ 8∙0 3 04
40°	$59,567 \\ 7.7932$	$58,679 \\ 7.8167$	$58,094_6$ 7.8286	$58,071_5$ $7\cdot8312$	57,563 7·8500 ₅		57,201 7·8563	${}^{56,937}_{7\cdot 8654_8}$	$56,502 \\ 7.8820$		56,218 7·8949 ₉	55,879 7·9059
45°	${}^{59,758_5}_{7\cdot6729}$	${}^{58,862_{5}}_{7\cdot 6974}$	58,264 7·7086	$\begin{array}{c} 58,245\\7{\cdot}7118_{\mathfrak{z}}\end{array}$	57,726 7·7304		57,345 ₅ 7·7345 ₅	57,085 7·7450	56,653 7·7630		56,362 7·7755	56,019 7·7868
50°	59,949 7·5563	$59,042 \\ 7.5812$	58,434 7·5928	58,407 7·5944	$57,888 \\ 7.6142$		57,508 7·6194	57,240 7·6293	$56,808_5$ 7.6485		56,511 7·6608	$56,161_{5}$ 7.6718
55°	${}^{60,142_5}_{7\cdot 4435}$	$59,227 \\ 7 \cdot 4693_5$	58,610 7·4810	58,567 7·4837	58,056 7·5024		57,681 7·5093	57,401 7·5180	56,960 7·5368		$56,661 \\ 7.5495$	56,298 7·5594
60°	60,337 7·3344 ₇	${}^{59,407_5}_{7\cdot 3602}$		${\begin{array}{*{20}c} 58,765\\ 7\cdot 3760_{5} \end{array}}$	58,225 7·3943		57,854 7·4027	57,561 7·4100	57,110 7·4283		56,81 3 7·4419	$56,438 \\ 7.4508$

of $V(y_o)$ from equation 6 are one-tenth (standard error about one-third) of those calculated from equation 7. Hence in the calculation of standard errors it is important to bear in mind the nature of the extrapolation function employed. Although the error in the thermodynamic pK_a 's is relatively large, it is probable that the temperature coefficient

TABLE 2.

The values of pK_a and the constants B and C of eqn. (3).

795

 pK_{a} (obs.) was obtained from eqn. (3); pK_{b} (obs.) (Bates) are the observed values of Bates and Hetzer; 1 $[V(y_{0})]^{\frac{1}{2}}$ was obtained from eqn. (7); $\Delta_{1} = pK_{a}$ (4) $- pK_{a}$ (obs.); $\Delta_{2} = pK_{a}$ (5) $- pK_{a}$ (obs.); $\Delta_{3} = pK_{a}$ (5) (Bates) $- pK_{a}$ (obs.) (Bates); $\Delta_{4} = pK_{a}$ (5) $- pK_{a}$ (5) $- pK_{a}$ (5) $- pK_{a}$ (5) (Bates); where pK_{a} (4) $= 3037 \cdot 61/T - 3 \cdot 9321 + 0 \cdot 00608510T$; pK_{a} (5) $= 6574 \cdot 61/T - 39 \cdot 0879 + 0 \cdot 1223040T - 0 \cdot 0001277861T^{2}$; pK_{a} (5) (Bates) $= 5362 \cdot 10/T - 27 \cdot 6550 + 0 \cdot 0865295T - 0 \cdot 0000906287T^{2}$ (calc. from the observed values of Bates and Hetzer ¹); $\sigma^{2} = V$ (log K) is the variance about the curves of eqns. (4) or (5).

Temp.		No. of	$10^{4}[V(y_{0})]^{\frac{1}{2}}$					pK_a (obs.)		
(c)	pK_a (obs.)	solns.	[eqn. (7)]	$B(\beta)$	$C(\gamma)$	$10^{4}\Delta_{1}$	$10^4\Delta_2$	(Bates)	$10^4\Delta_3$	$10^4\Delta_4$
0°	$8 \cdot 8553$	10	47	+1.2104	-1.2900	-50	-8	8.8500	-11	+56
5	8.6792	11	32	+0.9630	-0.5802	+16	+19	8.6774	+14	+23
10	8.5158	11	30	0.9481	-0.5324	+26	+8	8.5164	+3	l
15	8.3602	12	27	+0.9604	-0.5647	+25	0	8.3616	+3	-17
20	8.2124	12	24	+1.0049	-0.6534	+10	-12	8.2138	0	-26
25	8.0686	21	34	+0.9199	-0.2268	+14	+2	8.0746	-28	-30
30	7.9336	12	25	+1.1348	-1.0210	-12	-12	7.9344	+9	-28
35	7.8006	19	31	+1.0145	-0.4900	-3	+9	7.8031	+9	-25
40	7.6756	10	38	+1.1667	-1.0532	-23	-2	7.6772	0	-18
45	7.5515	19	41	+0.9734	-0.3375	-2	+21	7.5543	+4	-11
-50	7.4380	10	4 6	+1.3123	-1.4878	-40	-24	7.4365	-5	
55	7.3204	19	41	+0.9525	-0.2028	+8	+6		+3*	-+- 3
60	7.2098	9	39	+0.8976	-0.0878	+29	— 5			+9
			Av. 36		σ	= 2.74	$\sigma = \mathbf{l} \cdot \mathbf{r}$	46 σ	= 1.29	
					3	× 10-3	\times 10 ⁻	-3	imes 10-3	

* pK_a (5) (Bates) - pK_a (obs).

TABLE 3.

The values of pK_a obtained by using the full Debye-Hückel equation to represent the activity coefficients.

 pK_a (5) was obtained using eqn. (5); pK_a (D. H.) was obtained using the full Debye-Hückel equation. $a^* = \text{Ion-size parameter.}$ b = Slope in the full Debye-Hückel equation. $V(y_0) = \text{Variance of the intercept.}$

ſemp.				a *		$10^{8}V(y_{o})$	$10^{8}V(y_{o})$
(c)		$\mathrm{p}K_{\mathrm{a}}$ (5)	pK_{a} (D. H.)	(Å)	b	[eqn. (6)]	[eqn. (7)]
5°	(This work)	8.6792	8.6792	$2 \cdot 8$	-0.0809	116	1024
25	(This work)	8.0686	8.0713	$3 \cdot 2$	-0.0605	136	1170
25	(Ref. 1)	8.0768	8.0746	0		40	1003

of the pK_a is known with much greater accuracy, as suggested by the value of $V(\log K)$. This means that the errors in ΔS° and ΔC_p° , which do not depend on the absolute values of the thermodynamic pK_a 's, should be calculated from $V(\log K)$ rather than from $V(y_0)$.

It is interesting that Bates and Hetzer found a^* to be 0 since in this work 2.8 and 3.2 Å were obtained at 5° and 25°, respectively. A possible reason for this extraordinary discrepancy is the fact that potassium chloride was used in all the buffer solutions in this work, whereas the only ions present in Bates and Hetzer's solutions were the ions from the amine and chloride ions. The thermodynamic quantities associated with the acid dissociation of the former ion at a few representative temperatures are collected in Table 4. On

TABLE 4.

Thermodynamic quantities for the acid dissociation of the protonated form of tri(hydroxymethyl)methylamine.

			•	
Temp.	ΔG°	ΔH°	ΔS°	ΔC_{p}°
(c)	(kj mole ⁻¹)	(kj mole ⁻¹)	(J mole ⁻¹ deg. ⁻¹)	(J mole ⁻¹ deg. ⁻¹)
5°	46.229	50.01	13.58	166.9
15	46 ·121	48.52	8.31	130.6
25	46.058	47.40	4.52	91.4
35	46.025	46.70	$2 \cdot 19$	49.2
45	46.009	46.43	1.32	4.1
55	45·994	46.63	1.93	-44.0

the face of it they appear to be rather different from Bates and Hetzer's values, but this apparent discrepancy largely disappears when the latters' results are recalculated from a cubic equation similar to equation (5). Further evidence in support of equation 5 comes from the following observation. When Bates and Hetzer's data are extrapolated to 55° and 60° by means of their three-parameter equation, the pK_a's differ from ours by +0.0041and +0.0061, respectively, whereas the same data extrapolated by means of a fourparameter equation similar to equation (5) yield values differing by only +0.0003 and -0.0014, respectively from our pK_a's.

Bates and Hetzer have discussed the possible interpretations of these quantities. Their main points are: (a) the low pK_a , compared with those of other acids of this charge type, is due to the electron-attracting effect of the hydroxyl groups; (b) the positive entropy change may be due to the restricted rotation about the carbon-carbon bonds caused by the solvation shell in the cation (" the chain stiffening effect "), part of the increase being also due to the hydroxyl groups (by analogy with triethanolammonium). They do not put forward any convincing explanation of the contrary variation in ΔC_n° and ΔS° . Other facts to be explained are the decrease in ΔS° to a minimum at about 46⁶.

EXPERIMENTAL

Series 1.—Nine solutions were prepared by diluting a stock solution (tris: HCl \simeq 3:1:1, the ionic strengths ranging from 0.018 to 0.097. The e.m.f. measurements were made at 5°, 15°, 25°, 35°, and 45°, but only those between 25° and 45° inclusive were considered sufficiently reliable and were used in the final calculations.

Series 2.—Ten solutions were prepared individually by weighing out appropriate amounts of the amine hydrochloride, ~ 0.86 D-KOH, and water, the ionic strengths ranging from 0.017 to 0.083. The e.m.f. measurements were made from 0° to 60° at 5° intervals.

Tri(hydromethyl)methylamine (Tris).-(a) Free base for series (1). Commercial material (L. Light & Co., Colnbrook), recrystallised from aqueous methanol, was kindly supplied by Dr. B. R. Rabin. Analysis by titration with hydrochloric acid (addition by weight of ~ 1.0 D-HCl to within 96–98% of the end-point followed by titration with \sim 0.02n-HCl) gave a purity of 99.76% (99.870%, 99.656%). Titration of the stock showed the purity to be 99.71%(99.594%, 99.830%), and this value was applied as a correction factor in calculating the molalities.

(b) Hydrochloride. Commercial base (L. Light & Co., Colnbrook) was gradually added to bromine-free $\sim 6_{N-hydrochloric}$ acid. The product was recrystallised from 50% ethanol and then from 70% ethanol (152 g. in 250 ml.; recovery \sim 82%), and its purity was checked by gravimetric analysis for chloride (as AgCl) which showed it to be 99.24% (99.189%, 99.339%, and 99.188%). A correction was applied to the weights used. The density of the material (determined to correct the weights for the buoyancy of air) was 0.88.

Hydrochloric Acid (for Series 1).—Constant-boiling acid (20.21%) was used.

Miscellaneous.-The preparation of potassium chloride⁸ and carbonate-free potassium hydroxide, the measurement of the e.m.f.'s of the cells without liquid junction,⁹ and the measurement of temperature ¹⁰ have been described previously.

We thank the Central Research Fund of the University of London for the potentiometric equipment used in this work, and Miss A. Straker for many of the calculations.

DEPARTMENT OF BIOCHEMISTRY, UNIVERSITY COLLEGE, GOWER STREET, LONDON, W.C.1.

[Received, July 9th, 1962.]

⁸ Datta and Grzybowski, J., 1962, 3068. ⁹ Ashby, Crook, and Datta, *Biochem. J.*, 1954, **56**, 190.

¹⁰ Clarke, Cusworth, and Datta, Biochem. J., 1954, 58, 146.