147. The Acid Dissociation Constant of the Protonated Form of Tri(hydroxymethyl)methylamine.

By S. P. Datta, A. K. Grzybowski, and (in part) Barbara A. Weston.
Dissociations constants for this base at $0-60^{\circ}$ have been measured.
Discrepancies from published results are discussed.
Tri(hydroxymethyl)methylamine ("tris") is widely used in biochemical research for the preparation of buffers because of its low toxicity and the useful range of pH 's which can be covered. Therefore, it appeared desirable to make accurate measurements of the dissociation constant over a wide temperature range, and thus define more precisely the pH values of buffers prepared from it. It was also thought that a detailed study of the acid dissociation equilibria of this substance might throw light on the interaction of the hydroxyalkyl substituents with water. Since the completion of this work Bates and Hetzer ${ }^{1}$ have described the same equilibrium with substantially similar results.

Chloride-containing buffer solutions were used in cells without liquid junction of the type:

$$
\mathrm{Pt}, \mathrm{H}_{2}(\mathrm{l} \text { atm. })\left|\mathrm{R} \cdot \mathrm{NH}_{3}^{+}, \mathrm{R} \cdot \mathrm{NH}_{2}, \mathrm{Cl}^{-}\right| \mathrm{AgCl}, \mathrm{Ag}
$$

The concentrations of the solutions were expressed on the molal scale. From the e.m.f.'s of these cells, values of pwH were derived:

$$
\mathrm{pwH}=F\left(E-E_{0}\right) / \boldsymbol{R} T \ln 10+\log m_{\mathrm{Cl}^{-}}=-\log a_{\mathrm{H}^{+}}+\gamma_{\mathrm{Cl}^{-}} .
$$

The values of $\mathrm{p} K_{\mathrm{a}}$ are related to pwH as follows:

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{pwH}+\log \left[\mathrm{R} \cdot \mathrm{NH}_{3}^{+}\right] /\left[\mathrm{R} \cdot \mathrm{NH}_{2}\right]+\log \gamma_{\mathrm{R} \cdot \mathrm{NH}_{3}}+\gamma_{\mathrm{Cl}}-/ \gamma_{\mathrm{R} \cdot \mathrm{NH}_{2}}, \tag{1}
\end{equation*}
$$

where the activity coefficient term is represented ${ }^{2}$ by:

$$
\begin{equation*}
-\log \gamma_{\mathrm{R} \cdot \mathrm{NH}_{3}+\gamma_{\mathrm{Cl}^{-}} / \gamma_{\mathrm{R} \cdot \mathrm{NH}_{2}}=2 A I^{\frac{1}{2}}+B I+C I^{3}, ~}^{\text {, }} \tag{2}
\end{equation*}
$$

in which A is the Debye-Hückel constant and B and C are empirical parameters.
Corrections were applied for the hydrolysis of the basic species and for complex formation by the silver ion. ${ }^{2}$ The hydroxide-ion concentration was calculated from:

$$
m_{\mathrm{OH}^{-}}=\operatorname{antilog}\left(\mathrm{pwH}-\mathrm{p} K_{\mathrm{w}}\right),
$$

where $\mathrm{p} K_{\mathrm{w}}$ is the negative logarithm of the ionic product of water calculated from Robinson and Stokes's equation. ${ }^{3}$ The first and second stability constants for the trissilver complexes were determined by titration in cells with liquid junction from 0° to 60° at 10° intervals by the method described previously. ${ }^{4}$

The thermodynamic values of $\mathrm{p} K_{\mathrm{a}}$ were found by extrapolating to zero ionic strengths the function:

$$
\begin{equation*}
y=\mathrm{pwH}+\log \left[\mathrm{R}^{2} \cdot \mathrm{NH}_{3}^{+}\right] /\left[\mathrm{R} \cdot \mathrm{NH}_{2}\right]-2 A I^{\frac{1}{2}}=\mathrm{p} K_{\mathrm{a}}-B I-C I^{3}, \tag{3}
\end{equation*}
$$

which is obtained by combining equations 1 and 2 . The extrapolation was carried out by fitting experimental values of y to the above equation by the method of least squares.

The values of the E_{0} of the $\mathrm{Ag}, \mathrm{AgCl}$ electrodes used were determined by measurements of the e.m.f. of cells of the type:

$$
\mathrm{Pt}, \mathrm{H}_{2}(\mathrm{l} \mathrm{~atm} .)|\mathrm{HCl}| \mathrm{AgCl}, \mathrm{Ag}
$$

[^0]in some cases at 25° (Series 1) only, but in most cases at $5^{\circ}, 25^{\circ}$, and 45° (Series 2). In the former instance the temperature coefficient given by Bates and Bower ${ }^{5}$ was used but, in the latter, the E_{0} 's at the other temperature were interpolated by comparison with Bates and Bower's results. ${ }^{5}$ The concentrations of the hydrochloric acid solutions used were in the range $0.01-0.03 \mathrm{~m}$ and their activity coefficients were calculated from the data of Bates and Bower ${ }^{5}$ by a method described previously. ${ }^{2}$

The values of ($E-E_{0}$), the molalities, ionic strengths, and extrapolation functions y from equation 3 are given in Table 1. The observed values of $\mathrm{p} K_{\mathrm{a}}$, its standard error, and the constants B and C of equation 3 are given in Table 2. When the values of $\mathrm{p} K_{\mathrm{a}}$ were related to temperature by Harned and Robinson's ${ }^{6}$ equation,

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=A / T-D+C T \tag{4}
\end{equation*}
$$

the fit was unsatisfactory, as is evident from the differences between the observed and the calculated values of $\mathrm{p} K_{\mathrm{a}}$ shown in Table 2. It was found, however, that the experimental $\mathrm{p} K_{\mathrm{a}}$'s can be represented adequately by an equation of the form

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=A / T-D+C T+E T^{2} \tag{5}
\end{equation*}
$$

As can be seen from Table 2 the differences between the observed and the calculated values of $\mathrm{p} K_{\mathrm{a}}$ are then much smaller and more random. $\quad V(\log K)$ is 752×10^{-8} for equation 4 and 214×10^{-8} for equation 5 , where $V(\log K)$ is the variance of the observed values of $\mathrm{p} K_{\mathrm{a}}$ about the respective equations in temperature. $V(\log K)=\sum \Delta^{2} /(m-3)$ for equation 4, and $\sum \Delta^{2} /(m-4)$ for equation 5 , where m is the number of temperatures at which observations were made.

With the type of experimental procedure used, $V(\log K)$ is usually smaller than $V\left(y_{o}\right)$, the variance of the intercept in the extrapolation curves against ionic strength, owing to correlation of errors. This is because, when measurements are made at different temperatures on the same solution, errors in the stoicheiometry and failure in the reproducibility of the electrodes are repeated at each temperature. When the extrapolation against ionic strength is linear, $V\left(y_{0}\right)$ is given ${ }^{7}$ by:

$$
\begin{equation*}
V\left(y_{0}\right)=\left\{\frac{1}{n}+\frac{\bar{I}^{2}}{\sum_{1}^{n}(\mathrm{I}-\bar{I})^{2}}\right\} \frac{1}{n-2} \sum_{i}^{n} \Delta^{2} . \tag{6}
\end{equation*}
$$

However, when a second arbitrary parameter, in $I^{3 / 2}$, is introduced, a more complex formula must be used:

$$
\begin{align*}
& V\left(y_{0}\right)= \\
& \left\{\frac{1}{n}+\frac{\bar{I}^{2} \sum_{1}^{n}\left(I^{3 / 2}-\bar{I}^{3 / 2}\right)^{2}+\bar{I}^{3 / 2} \sum_{1}^{n}(I-\bar{I})^{2}-2 \bar{I}^{5 / 2} \sum_{1}^{n}(I-\bar{I})\left(I^{3 / 2}-\bar{I}^{3 / 2}\right)}{\sum_{1}^{n}(I-\bar{I})^{2} \sum_{1}^{n}\left(I^{3 / 2}-\bar{I}^{3 / 2}\right)^{2}-\left[\sum_{1}^{n}(I-\bar{I})\left(I^{3 / 2}-\bar{I}^{3 / 2}\right)\right]^{2}}\right\} \frac{1}{n-3} \sum_{1}^{n} \Delta^{2} \tag{7}
\end{align*}
$$

When the full Debye-Hückel equation is used to represent the activity coefficient term in the extrapolation function, the adjustable ion-size parameter a^{*} is itself arbitrary. Hence, although a function linear in ionic strength is ultimately obtained by adjusting a^{*}, it is not permissible to use equation 6 for $V\left(y_{0}\right)$, since the variance in a^{*} is not then included. To test these relations, the full Debye-Hückel equation was applied to our results at 5° and $25^{\circ}, a^{*}$ being found by minimising $\sum \Delta^{2}$ about the extrapolation lines. The intercepts, values of $a^{*}, V\left(y_{0}\right)$ from equation 6 , and the values of $V\left(y_{0}\right)$ from equation 7 for the corresponding extrapolations based on equation 3 are in Table 3. It is clear that the values

[^1]794 Datta, Grzybowski, and Weston: Acid Dissociation Constant of
Table 1.
Molalities and ionic strengths of solutions, e.m.f.'s of cell (1) (abs. v), and extrapolation functions y [eqn. (3)].
At each temperature the first line represents $10^{5}\left(E-E_{0}\right)$, and the second represents y.
Series 1.

$10^{2} m_{1}$	1.2163	1.6369	1.9026	2.5378	$3 \cdot 5568$	4-1044	$5 \cdot 4334$	6.134	4177
$10^{2} m_{1}$	0.9267	1 -2471	${ }_{1} 14496$	${ }_{1} .9334{ }_{8}$	${ }_{2} \cdot 7098$	3-1270	$4 \cdot 1395$	${ }_{4} \cdot 6740{ }^{\text {b }}$	$4 \cdot 8894$
$10^{2} m_{3}$	0.9183	$1 \cdot 2358$	$1 \cdot 4364$	1.9160	$2 \cdot 6853$	3.0987	4.0806	4.6317	$4 \cdot 8452$
25°	$\begin{aligned} & 55,799 \\ & 8 \cdot 1919 \end{aligned}$	$\begin{aligned} & 55,057 \\ & 8 \cdot 2071 \end{aligned}$	$\begin{aligned} & 54,725 \\ & 8.2164 \end{aligned}$	$\begin{aligned} & 54,089 \\ & 8.2839 \end{aligned}$	$\begin{gathered} 53,352 \\ 8.256 \end{gathered}$	$\begin{aligned} & 53,036 \\ & 8.9646 \end{aligned}$	$\begin{aligned} & 52,464_{6} \\ & 8.98 \end{aligned}$	$52,235$	$52,100$
35°	$\begin{aligned} & 55,958 \\ & 7.9236 \end{aligned}$	$\begin{aligned} & 55,286 \\ & 7 \cdot 9426 \end{aligned}$	$\begin{aligned} & 54,9349 \\ & 7 \cdot 9506 \end{aligned}$	$\begin{aligned} & 54,289 \\ & 7 \cdot 9700 \end{aligned}$	$\begin{aligned} & 53,520 \\ & 7.9908_{5} \end{aligned}$	$\begin{aligned} & 53,202_{5} \\ & 8.0011 \end{aligned}$	$\begin{aligned} & 52,612 \\ & 8.0541 \end{aligned}$	$\begin{aligned} & 52,374 \\ & 8.0401 \end{aligned}$	$\begin{aligned} & 52,237 \\ & 8.0373 \end{aligned}$
45°	$\begin{aligned} & 56,201 \\ & 7 \cdot 6744_{7} \end{aligned}$	$\begin{aligned} & 55,537 \\ & 7 \cdot 6982 \end{aligned}$	$\begin{aligned} & 55,162 \\ & 7 \cdot 7042 \end{aligned}$	$\begin{aligned} & 54,503 \\ & 7 \cdot 7249 \end{aligned}$	$\begin{aligned} & 53,711 \\ & 7 \cdot 7459 \end{aligned}$	$\begin{aligned} & 53,388 \\ & 7.7569 \end{aligned}$	$\begin{aligned} & 52,783 \\ & 7 \cdot 7817_{5} \end{aligned}$	$\begin{aligned} & 52,539 \\ & 7.7970 \end{aligned}$	$\begin{aligned} & 52,388 \\ & 7.7927 \end{aligned}$
55°	$\begin{aligned} & 56,489 \\ & 7 \cdot 4473_{5} \end{aligned}$	$\begin{aligned} & 55,807 \\ & 7 \cdot 4716 \end{aligned}$	$\begin{aligned} & 55,407 \\ & 7 \cdot 4754 \end{aligned}$	$\begin{aligned} & 54,742 \\ & 7 \cdot 4983 \end{aligned}$	$\begin{aligned} & 53,916 \\ & 7 \cdot 5181 \end{aligned}$	$\begin{aligned} & 53,586 \\ & 7.5297 \\ & \hline \end{aligned}$	$\begin{aligned} & 52,966 \\ & 7 \cdot 5550 \end{aligned}$	$\begin{aligned} & 52,715 \\ & 7.5704_{6} \end{aligned}$	$\begin{aligned} & 52,560 \\ & 7.5662 \end{aligned}$

Series 2.
$m_{1}=$ molality of tri(hydroxymethyl)methylamine hydrochloride; $m_{2}=$ molality of $\mathrm{KOH} ; y=$ $\mathrm{pwH}+\log \left[\left(m_{1}-m_{2}+m_{\mathrm{OH}-}\right) /\left(m_{2}-m_{\mathrm{OH}}-\Delta_{R}\right)\right]$, where Δ_{R} is the decrease in the molality of the free base due to complex-formation with Ag^{+}ions; I_{av} (the average ionic strength) $=\left(m_{1}+\Delta_{\mathrm{Cl}^{-}}\right)$, where $\Delta_{\mathrm{Cl}}-$ is the increase in the molality of Cl^{-}ions due to increased solubility of AgCl .

$10^{2} m_{1}$	1.6725	$2 \cdot 4330$	$3 \cdot 1394$	3-1733	4.0022_{5}	$4 \cdot 0022_{5}$	$4 \cdot 5919$	5-1697	$6.3676{ }_{5}$	$6 \cdot 6008$	$7 \cdot 2743$	$8 \cdot 2762_{5}$
$10^{2} m_{2}$	0.8536	$1 \cdot 2364_{7}$	1-6040	1.61825	2.0412	2.0412	$2 \cdot 3291$	$2 \cdot 6216$	$3 \cdot 2436$	3-3614 ${ }_{6}$	$3 \cdot 7019$	4-1664
$10^{2} I_{\mathrm{av}}$	$1 \cdot 6728$	$2 \cdot 4334$	3•1399	3-1738	$4 \cdot 0029$	4.0029	$4 \cdot 5926$	5-1705	6.3687	$6 \cdot 6017$	$7 \cdot 2755$	$8 \cdot 2776$
0°	58,302 ${ }_{5}$	57,512		56,992		56,528	56,231	55,979	55,590	55,514	55,339	55,057
	8.9636	8.9842		$9 \cdot 0005_{5}$		$9 \cdot 0155$	$9 \cdot 0254$	9.03055	9.0454	9.0470	$9 \cdot 0576$	$9 \cdot 0712$
5°	58,421	57,615		57,092	56,611	56,619	56,321	56,061	55,675	55,599	55,414	55,118
	8.7917_{5}	$8 \cdot 8121$		8.8297	8-8431	8.8446	$8 \cdot 8552$	8.8598	$8 \cdot 8764$	8.8784 ${ }_{8}$	$8 \cdot 8877_{5}$	
10°	58,560	57,739		57,208	56,723	56,727	56,424	56,157	55,772	55,694	55,5048	55,201
	$8 \cdot 6296$	$8 \cdot 6499$		$8 \cdot 6676$	$8 \cdot 6820$	$8 \cdot 6827$	$8 \cdot 6932$	$8 \cdot 6975$	8.7155	8.7174	8.7266	$8 \cdot 73805$
15°	58,710 ${ }^{5}$	57,875	57,357	57,334	56,843	56,846	56,538	56,268	$55,877_{5}$	55,799	55,606	55,295
	$8 \cdot 4751$	$8 \cdot 4954$	8.5107	8.5131	$8 \cdot 5278$	$8 \cdot 5284$	8.5390	8.54347	8.5617	8.5638	$8 \cdot 5728$	8.5841
20°	58,872	58,023	57,496	57,470	56,973	56,975	56,661	56,389	55,989	55,912	55,714	55,399
	$8 \cdot 3278$	8-3482	8.3636	$8 \cdot 3654$	$8 \cdot 3807$	$8 \cdot 3811$	$8 \cdot 3915$	$8 \cdot 3965$	8.4143	8.4168	$8 \cdot 4257$	$8 \cdot 4370$
25°	59,036	58,177	57,638	57,603	57,108	57,105	56,791	56,518	56,107	56,030	55,830	55,509
	8.1858	8-2069	$8 \cdot 2218$	8-2222	$8 \cdot 2392{ }_{5}$	8-2387	$8 \cdot 2501$	$8 \cdot 2556$	$8 \cdot 2728$	$8 \cdot 2755$	8-2846	$8 \cdot 2958$
30°	59,208	58,340	57,788	57.747	57,253	57,238	45,9248	56,652	56,234	56,154	55,954	55,627
	8.0497	8-0718	$8 \cdot 0860$	8.0854 ${ }_{6}$	8-1041	8-1016	$8 \cdot 1140$	8-1204	8-1374	8-1400	8-14949	$8 \cdot 1607$
35°	59,379	58,502	57,934	57,909	57,402		57,050	56,787	56,361		56,080	55,747
	$7 \cdot 9181$	$7 \cdot 9410$	$7 \cdot 9540$	$7 \cdot 9563$	$7 \cdot 9740$		7.9810	7.9897	8.0064 ${ }_{6}$		8.0192	$8 \cdot 0304$
40°	59,567	58,679	58,094 ${ }^{6}$	$58,071{ }_{5}$	57,563		57,201	56,937	56,502		56,218	55,879
	$7 \cdot 7932$	$7 \cdot 8167$	$7 \cdot 8286$	$7 \cdot 8312$	$7 \cdot 8500_{5}$		$7 \cdot 8563$	7-8654 ${ }_{8}$	$7 \cdot 8820$		$7 \cdot 8949$	5
45°	59,758	58,862 ${ }_{5}$	58,264	58,245	57,726		$57,345_{5}$	57,085	56,653		56,362	56,019
	7-6729	$7 \cdot 6974$	$7 \cdot 7086$	$7 \cdot 7118$	7.7304		7.7345	7.7450	$7 \cdot 7630$		$7 \cdot 7755$	$7 \cdot 7868$
50°	59,949	59,042	58,434	58,407	57,888		57,508	57,240	$56,808{ }_{5}$		56,511	56,1615
	$7 \cdot 5563$	7.5812	$7 \cdot 5928$	$7 \cdot 5944$	$7 \cdot 6142$		$7 \cdot 6194$	$7 \cdot 6293$	$7 \cdot 6485$		$7 \cdot 6608$	$7 \cdot 6718$
55°	$60,142_{5}$	59,227	58,610	58,567	58,056		57,681	57,401	56,960		56,661	56,298
	$7 \cdot 4435$	$7 \cdot 4693{ }_{5}$	$7 \cdot 4810$	$7 \cdot 4837$	$7 \cdot 5024$		7.5093	7.5180	$7 \cdot 5368$		$7 \cdot 5495$	$7 \cdot 5594$
60°	60,337	59,4075		58,765	58,225		57,854	57,561	57,110		56,813	56,438
	7-33447	7-3602 ${ }^{\text {5 }}$		$7 \cdot 3760{ }_{5}$	7-3943		7-4027	$7 \cdot 4100$	$7 \cdot 4283$		$7 \cdot 4419$	$7 \cdot 4508$

of $V\left(y_{\mathrm{o}}\right)$ from equation 6 are one-tenth (standard error about one-third) of those calculated from equation 7. Hence in the calculation of standard errors it is important to bear in mind the nature of the extrapolation function employed. Although the error in the thermodynamic $\mathrm{p} K_{\mathrm{a}}$'s is relatively large, it is probable that the temperature coefficient

Table 2.
The values of $\mathrm{p} K_{\mathrm{a}}$ and the constants B and C of eqn. (3).
$\mathrm{p} K_{\mathrm{a}}$ (obs.) was obtained from eqn. (3); $\mathrm{p} K_{\mathrm{a}}$ (obs.) (Bates) are the observed values of Bates and Hetzer; ${ }^{1}\left[V\left(y_{0}\right)\right] \frac{1}{2}$ was obtained from eqn. (7); $\Delta_{1}=\mathrm{p} K_{\mathrm{a}}(4)-\mathrm{p} K_{\mathrm{a}}$ (obs.); $\Delta_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}$ (5) - $\mathrm{p} K_{\mathrm{a}}$ (obs.); $\Delta_{\mathrm{s}}=\mathrm{p} K_{\mathrm{a}}$ (5) (Bates) $-\mathrm{p} K_{\mathrm{a}}$ (obs.) (Bates); $\Delta_{4}=\mathrm{p} K_{\mathrm{a}}$ (5) $-\mathrm{p} K_{\mathrm{a}}$ (5) (Bates); where $\mathrm{p} K_{\mathrm{a}}$ (4) $=$ $3037.61 / T-3.9321+0.00608510 T ; \mathrm{p} K_{\mathrm{a}}(5)=6574.61 / T-39.0879+0.1223040 T-0.0001277861 T^{2} ;$ $\mathrm{p} K_{\mathrm{a}} \quad(5) \quad$ (Bates) $=5362 \cdot 10 / T-27 \cdot 6550+0 \cdot 0865295 T-0 \cdot 0000906287 T^{2}$ (calc. from the observed values of Bates and Hetzer ${ }^{1}$); $\sigma^{2}=V(\log K)$ is the variance about the curves of eqns. (4) or (5).

Temp. (c)	$\mathrm{p} K_{a}$ (obs.)	No. of solns.	$\begin{gathered} 10^{4}\left[V\left(y_{\mathrm{o}}\right)\right]^{\frac{1}{2}} \\ {[\mathrm{eqn} .(7)]} \end{gathered}$	$B(\beta)$	$C(\gamma)$	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	$\mathrm{p} K_{a}$ (obs.) (Bates)	$10^{4} \Delta_{3}$	$10^{4} \Delta_{4}$
0°	$8 \cdot 8553$	10	47	+1.2104	-1.2900	-50	-8	$8 \cdot 8500$	-11	+56
5	$8 \cdot 6792$	11	32	+0.9630	-0.5802	+16	+19	$8 \cdot 6774$	+14	$+23$
10	$8 \cdot 5158$	11	30	-0.9481	-0.5324	+26	+8	$8 \cdot 5164$	$+3$	-1
15	8•3602	12	27	+0.9604	-0.5647	+25	0	$8 \cdot 3616$	+3	-17
20	$8 \cdot 2124$	12	24	+1.0049	-0.6534	+10	-12	$8 \cdot 2138$	0	-26
25	$8 \cdot 0686$	21	34	+0.9199	-0.2268	+14	+2	$8 \cdot 0746$	-28	-30
30	7.9336	12	25	+1•1348	-1.0210	-12	-12	7.9344	$+9$	-28
35	$7 \cdot 8006$	19	31	$+1.0145$	-0.4900	-3	$+9$	7.8031	$+9$	-25
40	$7 \cdot 6756$	10	38	+1.1667	-1.0532	-23	-2	$7 \cdot 6772$	0	-18
45	7.5515	19	41	+0.9734	-0.3375	-2	$+21$	$7 \cdot 5543$	$+4$	-11
. 0	$7 \cdot 4380$	10	46	+1.3123	-1.4878	-40	-24	7.4365	-5	-4
95	$7 \cdot 3204$	19	41	$+0.9525$	-0.2028	$+8$	$+6$		$+3^{*}$	$+3$
130	$7 \cdot 2098$	9	39	$+0.8976$	-0.0878	$+29$	-5		-14*	$+9$
			Av. 36			$=2 \cdot 74$	$\sigma=1.4$		$=1.29$	
						10^{-3}	$\times 10^{-3}$		10^{-3}	
* $\mathrm{p} K_{a}(5)$ (Bates) $-\mathrm{p} K_{a}$ (obs).										

Table 3.
The values of $p K_{a}$ obtained by using the full Debye-Hückel equation to represent the activity coefficients.
$\mathrm{p} K_{\mathrm{a}}$ (5) was obtained using eqn. (5); $\mathrm{p} K_{\mathrm{a}}$ (D. H.) was obtained using the full Debye-Hückel equation. $a^{*}=$ Ion-size parameter. $b=$ Slope in the full Debye-Hückel equation. $\quad V\left(y_{0}\right)=$ Variance of the intercept.

Temp. (c)		$\mathrm{p} K_{\mathrm{a}}(5)$	$\mathrm{p} K_{\mathrm{a}}$ (D. H.)	$\begin{gathered} a^{*} \\ (\AA) \end{gathered}$	b	$\begin{aligned} & 10^{8} V\left(y_{\mathrm{o}}\right) \\ & {[\text { eqn. (6) }]} \end{aligned}$	$\begin{aligned} & 10^{8} V\left(y_{\mathrm{o}}\right) \\ & {[\mathrm{eqn.} .(7)]} \end{aligned}$
5°	(This work)	$8 \cdot 6792$	$8 \cdot 6792$	$2 \cdot 8$	-0.0809	116	1024
2.5	(This work)	8.0686	8.0713	$3 \cdot 2$	-0.0602	136	1170
25	(Ref. 1)	8.0768	$8 \cdot 0746$,	-	40	1003

of the $\mathrm{p} K_{\mathrm{a}}$ is known with much greater accuracy, as suggested by the value of $V(\log K)$. This means that the errors in ΔS° and $\Delta C^{\circ}{ }^{\circ}$, which do not depend on the absolute values of the thermodynamic $\mathrm{p} K_{\mathrm{a}}$'s, should be calculated from $V(\log K)$ rather than from $V\left(y_{\mathrm{o}}\right)$.

It is interesting that Bates and Hetzer found a^{*} to be 0 since in this work 2.8 and $3 \cdot 2 \AA$ were obtained at 5° and 25°, respectively. A possible reason for this extraordinary discrepancy is the fact that potassium chloride was used in all the buffer solutions in this work, whereas the only ions present in Bates and Hetzer's solutions were the ions from the amine and chloride ions. The thermodynamic quantities associated with the acid dissociation of the former ion at a few representative temperatures are collected in Table 4. On

Table 4.

Thermodynamic quantities for the acid dissociation of the protonated form of tri(hydroxymethyl)methylamine.
Temp.
(c)
5°
15
25
35
45
55
ΔG°
$(\mathrm{kJ} \mathrm{mole}$
$46 \cdot 229$
$46 \cdot 121$
$46 \cdot 058$
$46 \cdot 025$
$46 \cdot 009$
45.994
ΔH°
(kJ mole-1)
$50 \cdot 01$
48.52
$47 \cdot 40$
$46 \cdot 70$
46.43
46.63
ΔS°
(J mole
$13 \cdot \mathrm{deg}^{-1}$)
138
8.31
4.52
$2 \cdot 19$
1.32
1.93
$\Delta C_{p}{ }^{\circ}$
(J mole ${ }^{-1}$ deg. ${ }^{-1}$)
$166 \cdot 9$
$130 \cdot 6$
$91 \cdot 4$
$49 \cdot 2$
$4 \cdot 1$
$-44 \cdot 0$
the face of it they appear to be rather different from Bates and Hetzer's values, but this apparent discrepancy largely disappears when the latters' results are recalculated from a cubic equation similar to equation (5). Further evidence in support of equation 5 comes from the following observation. When Bates and Hetzer's data are extrapolated to 55° and 60° by means of their three-parameter equation, the $\mathrm{p} K_{\mathrm{a}}$'s differ from ours by +0.0041 and +0.0061 , respectively, whereas the same data extrapolated by means of a fourparameter equation similar to equation (5) yield values differing by only +0.0003 and -0.0014 , respectively from our $\mathrm{p} K_{\mathrm{a}}$'s.

Bates and Hetzer have discussed the possible interpretations of these quantities. Their main points are: (a) the low $\mathrm{p} K_{\mathrm{a}}$, compared with those of other acids of this charge type, is due to the electron-attracting effect of the hydroxyl groups; (b) the positive entropy change may be due to the restricted rotation about the carbon-carbon bonds caused by the solvation shell in the cation (" the chain stiffening effect "), part of the increase being also due to the hydroxyl groups (by analogy with triethanolammonium). They do not put forward any convincing explanation of the contrary variation in $\Delta C_{p}{ }^{\circ}$ and ΔS°. Other facts to be explained are the decrease in ΔS° to a minimum at about 46°.

Experimental

Series 1.-Nine solutions were prepared by diluting a stock solution (tris: $\mathrm{HCl}: \mathrm{KCl} \approx$ $3: 1: 1$), the ionic strengths ranging from 0.018 to 0.097 . The e.m.f. measurements were made at $5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}$, and 45°, but only those between 25° and 45° inclusive were considered sufficiently reliable and were used in the final calculations.

Series 2.-Ten solutions were prepared individually by weighing out appropriate amounts of the amine hydrochloride, $\sim 0.86 \mathrm{D}-\mathrm{KOH}$, and water, the ionic strengths ranging from 0.017 to 0.083 . The e.m.f. measurements were made from 0° to 60° at 5° intervals.

Tvi(hydromethyl)methylamine (Tris).-(a) Free base for series (1). Commercial material (L. Light \& Co., Colnbrook), recrystallised from aqueous methanol, was kindly supplied by Dr. B. R. Rabin. Analysis by titration with hydrochloric acid (addition by weight of $\sim \mathbf{l} \cdot 0 \mathrm{D}-$ HCl to within $96-98 \%$ of the end-point followed by titration with $\sim 0.02 \mathrm{~N}-\mathrm{HCl}$) gave a purity of $99.76 \%(99.870 \%, 99.656 \%)$. Titration of the stock showed the purity to be 99.71% $(99.594 \%, 99.830 \%)$, and this value was applied as a correction factor in calculating the molalities.
(b) Hydrochloride. Commercial base (L. Light \& Co., Colnbrook) was gradually added to bromine-free $\sim 6 \mathrm{~N}$-hydrochloric acid. The product was recrystallised from 50% ethanol and then from 70% ethanol (152 g . in 250 ml .; recovery $\sim 82 \%$), and its purity was checked by gravimetric analysis for chloride (as AgCl) which showed it to be $99 \cdot 24 \%(99 \cdot 189 \%, 99 \cdot 339 \%$, and $\mathbf{9 9} \cdot \mathbf{1 8 8} \%$). A correction was applied to the weights used. The density of the material (determined to correct the weights for the buoyancy of air) was 0.88 .

Hydrochloric Acid (for Series 1).-Constant-boiling acid ($20 \cdot 21 \%$) was used.
Miscellaneous.-The preparation of potassium chloride ${ }^{8}$ and carbonate-free potassium hydroxide, the measurement of the e.m.f.'s of the cells without liquid junction, ${ }^{9}$ and the measurement of temperature ${ }^{10}$ have been described previously.

We thank the Central Research Fund of the University of London for the potentiometric equipment used in this work, and Miss A. Straker for many of the calculations.

Department of Biochemistry, University College, Gower Street, London, W.C.l.

[^2]
[^0]: ${ }^{1}$ Bates and Hetzer, J. Phys. Chem., 1961, 65, 667.
 ${ }^{2}$ Datta and Grzybowski, Trans. Faraday Soc., 1958, 54, 1179.
 ${ }^{3}$ Robinson and Stokes, "Electrolyte Solutions," Butterworths Scientific Publns., London, 1955, p. 496 .
 ${ }_{4}^{4}$ Datta and Grzybowski, $J ., 1959,1091$.

[^1]: ${ }^{5}$ Bates and Bower, J. Res. Nat. Bur. Stand., 1954, 53, 283.
 ${ }^{6}$ Harned and Robinson, Trans. Fayaday Soc., 1940, 36, 973.
 7 Please, Biochem. J., 1954, 56, 196.
 D D

[^2]: ${ }^{8}$ Datta and Grzybowski, $J ., 1962,3068$.
 ${ }^{9}$ Ashby, Crook, and Datta, Biochem. J., 1954, 56, 190.
 ${ }^{10}$ Clarke, Cusworth, and Datta, Biochem. J., 1954, 58, 146.

